Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.
نویسندگان
چکیده
Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and ventricular arrhythmias that cause sudden cardiac death. In patients with heart failure, chronic activation of the "fight or flight" stress response leads to protein kinase A (PKA) hyperphosphorylation of RyR2 at Ser-2808. PKA phosphorylation of RyR2 Ser-2808 reduces the binding affinity of the channel-stabilizing subunit calstabin2, resulting in leaky RyR2 channels. We developed RyR2-S2808A mice to determine whether Ser-2808 is the functional PKA phosphorylation site on RyR2. Furthermore, mice in which the RyR2 channel cannot be PKA phosphorylated were relatively protected against the development of heart failure after myocardial infarction. Taken together, these data show that PKA phosphorylation of Ser-2808 on the RyR2 channel appears to be a critical mediator of progressive cardiac dysfunction after myocardial infarction.
منابع مشابه
Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice.
Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 280...
متن کاملPKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure
he type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca 2 ) release channel required for skeletal muscle excitation– contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation...
متن کاملPKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle
The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation....
متن کاملCardiac ryanodine receptor phosphorylation: target sites and functional consequences.
A study by Xiao and co-workers in this issue of the Biochemical Journal demonstrates PKA (protein kinase A)-dependent phosphorylation of Ser-2030 on the cardiac ryanodine receptor (RyR2) that is activated by beta-adrenergic agonists. They show that RyR2 phosphorylation at this site is not appreciably altered in heart failure samples, but retains PKA-dependence of phosphorylation. They contrast ...
متن کاملIntact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor.
Increased phosphorylation of the cardiac ryanodine receptor (RyR)2 by protein kinase A (PKA) at the phosphoepitope encompassing Ser2808 has been advanced as a central mechanism in the pathogenesis of cardiac arrhythmias and heart failure. In this scheme, persistent activation of the sympathetic system during chronic stress leads to PKA "hyperphosphorylation" of RyR2-S2808, which increases Ca2+ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2006